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ABSTRACT

When gravitational waves (GWs) from a spinning neutron star arrive from behind the Sun, they are
subjected to gravitational lensing that imprints a frequency-dependent modulation on the waveform.
This modulation traces the projected solar density and gravitational potential along the path as
the Sun passes in front of the neutron star. We calculate how accurately the solar density profile
can be extracted from the lensed GWs using a Fisher analysis. For this purpose, we selected three
promising candidates (the highly spinning pulsars J1022+1001, J1730-2304, and J1745-23) from the
pulsar catalog of the Australia Telescope National Facility. The lensing signature can be measured
with 3� confidence when the signal-to-noise ratio (SNR) of the GW detection reaches 100 (f/300Hz)�1

over a one-year observation period (where f is the GW frequency). The solar density profile can be
plotted as a function of radius when the SNR improves to & 104.
Subject headings: gravitational lensing: weak — gravitational waves — Sun: general

1. INTRODUCTION

Since the direct detection of gravitational wave (GW)
signal from a merging black hole binary (GW150914:
Abbott et al. 2016), GW astronomy has attracted in-
creasing interest. Currently, all GW sources detected
by the ground-based detectors of the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO), the Virgo
interferometer, and the Kamioka Gravitational Wave
Detector (KAGRA) are compact binary coalescences
(CBCs) of stellar-mass black holes and neutron stars.
The LIGO-Virgo-KAGRA (LVK) collaboration reported
⇠ 90 candidates of CBC events (The LIGO Scientific
Collaboration et al. 2021). However, the ground-based
detectors are also expected to detect spinning neutron
stars (e.g., Abbott et al. 2022b). A neutron star that
is non-axisymmetric around its spin axis, resulting in
a so-called mountainous profile, emits continuous GWs.
Non-axisymmetry may be caused by crustal deformation,
magnetic fields, and mass accretion from the star’s com-
panion (e.g., recent reviews by Glampedakis & Gualtieri
(2018) and Riles (2022)). Although the LVK collabo-
ration has been searching for continuous GW signals, no
event has yet been reported (Abbott et al. 2021, 2022b,a;
The LIGO Scientific Collaboration et al. 2022).
If a GW signal encounters the Sun along its path, grav-

itational lensing imprints a frequency-dependent modu-
lation on the waveform. In geometrical optics (i.e., the
zero wavelength limit of GWs), the solar density modu-
lates the amplitude with a magnification e↵ect, while the
gravitational potential modulates the phase by imposing
a potential (or Shapiro) time delay. These modulations
can be obtained along the transversal path of the Sun
moving in front of the source (the duration of this move-
ment is approximately half a day). Therefore, in prin-
ciple, one can probe the solar interior using the lensed
signal. GW lensing by the Sun has been studied as a
tool for amplifying the strain amplitudes of GWs from
a distant source and probing the solar structure (e.g.,

Cyranski & Lubkin 1974; Sonnabend 1979; Patla & Ne-
miro↵ 2008; Marchant et al. 2020). Before the 1980s,
these studies were based on geometrical optics. Bontz
& Haugan (1981) first demonstrated that the di↵raction
e↵ect caused by the finite wavelength of GWs suppresses
magnification near the focal point at lower frequencies
(f . 104 Hz). Recently, Marchant et al. (2020) proposed
that the solar structure can be probed through the lensed
GW signals from a pulsar behind the Sun. However, they
only roughly estimated the detectability of the lensing
signature, without calculating the measurement accuracy
of the density profile. Very recently, Jung & Kim (2022)
reported that the Fresnel scale is comparable to the so-
lar radius within the frequency band of the ground-based
detectors; therefore, the inner profile of the Sun can (in
principle) be probed with the lensing modulation on a
chirp signal from a CBC.
In this study, we investigated the accuracy of mea-

suring the solar density profile using the lensed signal
of a known pulsar. Because ground-based detectors de-
tect GW wavelengths longer than (or comparable to) the
solar Schwarzschild radius, gravitational lensing should
employ wave optics (e.g., Ohanian 1974; Bliokh & Mi-
nakov 1975; Schneider et al. 1992; Nakamura & Deguchi
1999; Takahashi & Nakamura 2003; Dai et al. 2018; Oguri
2019; Liao et al. 2022). We first calculate the lensed
waveform based on wave optics. We discuss the e↵ects of
frequency and impact parameter on the waveform (Sec-
tion 2). Then, we extracted the known pulsars crossing
behind the Sun from the Australia Telescope National
Facility (ATNF) pulsar catalog (Manchester et al. 2005).
From the extracted list, we select suitable candidates by
calculating the lensing modulations of these pulsars (Sec-
tion 3). Using these candidates, we calculate the de-
tectability of the lensing signature and the accuracy of
measuring the solar density profile through a Fisher anal-
ysis (Section 4). Finally, we roughly estimate the number
of Galactic millisecond pulsars (MSPs) behind the Sun,
which are potentially detectable by near-future radio sur-
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2 Takahashi, Morisaki & Suyama

Fig. 1.— Configuration of the detector, Sun, and source. DL,
DLS, and DS denote the distances between them. Solid line is the
GW path. Angular coordinates ✓ and ✓s describe the incoming
direction of the GWs and source position, respectively, with respect
to the solar center.

veys (Section 5). The study findings are summarized in
Section 6.

2. AMPLITUDE AND PHASE MODULATIONS OF SOLAR
LENSING

This section introduces amplitude and phase modula-
tions of lensed waveform, based on wave optics.

2.1. Lensed waveform

Figure 1 shows the configuration of the detector, Sun,
and source. The solid line describes a single GW path1.
We assume the thin-lens approximation, in which the so-
lar density and its gravitational potential are projected
onto a plane perpendicular to the line-of-sight. Further-
more, we assume the flat-sky approximation, in which
|✓|, |✓s| ⌧ 1. As the coordinate system is fixed at the so-
lar position, the background source (pulsar) moves along
the ecliptic longitude following the annual solar motion.
The distance to the Sun is DL = 1au and the solar an-
gular radius is ✓� = arctan[R�/(1 au)] ' 16 arcmin. In
this paper, the annual modulation of DL is ignored be-
cause it changes by < 2% as the Earth moves elliptically
around the Sun.
The lensed waveform h̃L(f) in the frequency domain is

obtained by multiplying the unlensed waveform h̃(f) by
a function F (f ;✓s) (e.g., Nakamura 1998; Takahashi &
Nakamura 2003):

h̃L(f ;✓s) = F (f ;✓s)h̃(f),

= [1 +AF (f ;✓s)] e
i�F (f ;✓s)h̃(f). (1)

In the second line, AF (⌘ |F |� 1) and �F (⌘ ln(F/|F |))
represent the amplitude and phase modulations, respec-
tively. The GW polarization is ignored because the po-
larization rotation due to lensing is negligibly small (e.g.,
Hou et al. 2019; Ezquiaga et al. 2021; Dalang et al. 2022).
The function F , called the amplification factor or trans-
mission factor, is given by the following di↵raction inte-
gral (e.g., Schneider et al. 1992):

F (f ;✓s) =
DLDS

cDLS

f

i

Z
d2✓ exp [2⇡iftd(✓,✓s)] , (2)

1 In wave optics, the lensed waveform is the superposition of
many GW paths from the source to the detector (Eq. (2)). The
solid line represents one of them.

where the time delay is given by

td(✓,✓s) =
1

c

"
DLDS

2DLS

|✓ � ✓s|
2
�
 ̂(✓)

c2

#
. (3)

The first and second terms are the geometrical and po-
tential (or Shapiro) time delays, respectively. Because
the distance to the Sun is much shorter than the distance
to the source, hereafter, we assume that DS/DLS ' 1.
The two-dimensional lens potential  ̂(✓) is determined
from the solar-projected density profile ⌃(✓) using the
Poisson equation:

r
2

✓ ̂(✓) = 8⇡GD2

L
⌃(✓). (4)

Outside the Sun, the potential is identical to that of a
point mass:

 ̂(✓) = 4GM� ln

✓
✓

✓E

◆
for ✓ > ✓�, (5)

where ✓E is an arbitrary constant, here set to the an-
gular Einstein radius; i.e., ✓E = [4GM�/(c2DL)]1/2 '

0.043 ✓�. The Sun is modeled using the BS05(OP) spher-
ical density model2 in Bahcall et al. (2005). The model
density agrees within 2% of the helioseismological results
across the whole radius (their Fig. 1). As the density pro-
file is spherical, the integration (2) can be performed over
the azimuth and F reduces to

F (f ; ✓s) =
2⇡fDL

ic

Z 1

0

d✓ ✓J0

✓
2⇡fDL

c
✓✓s

◆

⇥ exp

"
2⇡if

(
1

2c
DL

�
✓2 + ✓2

s

�
�
 ̂(✓)

c3

)#
, (6)

where J0 is the zero order Bessel function. Equation
(6) is numerically integrated using integration by parts
(Appendix A of Takahashi (2004); Guo & Lu (2020)).

2.2. High- and low-frequency limits

This subsection presents the high- and low-frequency
limits of the amplification factor. In the high-frequency
limit (i.e., the geometrical-optics limit), because the ex-
ponential term of F in Eq. (2) oscillates violently, a sta-
tionary point of td(✓,✓s) contributes to the integral (e.g.,
Schneider et al. 1992). This point is a solution of
r✓td(✓,✓s) = 0 :

✓s = ✓ � ↵̂(✓), (7)

from Eq. (3), where ↵̂ = r✓ ̂/(c2DL) is the deflection
angle. Equation (7) is the lens equation. The image
position ✓i is obtained by solving Eq. (7). Note that
only a single image is formed irrespective of ✓s. In the
high-frequency limit, F reduces to the following simple
form:

lim
f!1

F (f ;✓s) = |µ(✓i,✓s)|
1/2 exp [2⇡iftd(✓i,✓s)] , (8)

where µ = [ det(@✓s/@✓i) ]�1 is the magnification of the
image.

2 The numerical table can be downloaded from
http://www.sns.ias.edu/ jnb/SNdata/sndata.html#bs2005.
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Fig. 2.— Solar deflection angle, convergence, and potential (or Shapiro) time delay as functions of angular radius ✓ (normalized by the
solar radius ✓�). The convergence  in the middle panel is the dimensionless projected density profile. The potential time delay in the
right panel is the projected gravitational potential divided by c3. Near and outside the surface (✓/✓� & 1), the result approaches that of
Eq. (5) for a point mass (the dashed line).

In the weak-gravitational field limit, the magnification
can be approximated as µ ' 1 + 2, where  = ⌃/⌃cr

is the convergence and ⌃cr = c2/(4⇡GDL) is the critical
density (e.g., Bartelmann & Schneider 2001). Accord-
ingly, AF and �F reduce to

lim
f!1

AF (f ;✓s) ' (✓s) =
4⇡GDL

c2
⌃(✓s),

lim
f!1

�F (f ;✓s) = 2⇡ftd(✓i,✓s) ' �2⇡f
 ̂(✓s)

c3
. (9)

Therefore, AF and �F trace the projected density profile
and gravitational potential, respectively.
Figure 2 plots the deflection angle, convergence, and

gravitational potential as functions of ✓ (as these vari-
ables are functions of ✓, we plot ✓ rather than ✓s along
the x-axis). The deflection angle is consistent with the
known result ↵̂ = 4GM�/(c2R�) ' 1.75 arcsec at the
surface. The maximum deflection is ↵̂ ' 4.57 arcsec at
✓ ' 0.23 ✓�. Because ↵̂ is much smaller than the so-
lar radius (✓� ' 16 arcmin), we can safely set ✓i ' ✓s
from Eq. (7). Therefore, the second term of td in
Eq. (3) exceeds the first term in the geometrical-optics
limit. Meanwhile, the convergence  is maximized at
⇠ 0.04 near the center. The profile is flat at the core
(✓ . 0.03 ✓�), but it drops steeply at ✓ & 0.1 ✓�. The
typical gravitational time delay is ⇡ 10�5 s in the Sun.
Near the center, the potential in Eq. (4) can be approx-
imated as  ̂(✓)= const.+(c2DL/2)(✓ = 0) ✓2+O(✓3).
The results of Fig. 2 are consistent with previous works
on lensing by the transparent Sun (Bontz & Haugan
1981; Patla & Nemiro↵ 2008; Marchant et al. 2020; Jung
& Kim 2022).
In the large-angle limit ✓s � ✓�, the geometrical-optics

result (9) is recovered because 2⇡ftd � 1. As the grav-
itational potential in Eq. (5) is valid only for ✓ ⌧ 1, it

must be replaced with (e.g., Backer & Hellings 1986)

 ̂(✓) = 2GM� ln

⇢
2(1� cos ✓)

✓2
E

�
, (10)

when ✓ & 1.
We now investigate the low-frequency limit. Changing

the variables to ✓0 =
p
f✓ and ✓0

s
=

p
f✓s in Eq. (2), F

is rewritten as

F (f ;✓s) =
DL

ic

Z
d2✓0 exp


2⇡i

c

⇢
DL

2
|✓0

� ✓0
s
|
2

�
f

c2
 ̂

✓
✓0
p
f

◆��
. (11)

In the low-frequency limit,  ̂ can be replaced with its
value at infinity:

lim
f!0

 ̂

✓
✓0
p
f

◆
= 4GM� ln

✓
✓0

p
f✓E

◆
,

from Eq. (5). Inserting this  ̂ into Eq. (11) and expand-
ing f as a Taylor series, we have

lim
f!0

AF (f ;✓s) =
2⇡2GM�

c3
f,

lim
f!0

�F (f ;✓s) =
4⇡GM�

c3
f


� + ln

✓
4⇡GM�

c3
f

◆�
,

(12)

where � = 0.5772 · · · is Euler’s constant.

2.3. Amplitude and phase modulations

Figure 3 plots AF and �F as functions of f for vari-
ous ✓s. In the high- and low-frequency limits, the plots
are consistent with the analytical results of Eqs. (9) and
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Fig. 3.— Amplitude and phase modulations as functions of frequency at various source positions ✓s/✓� = 0–2. Horizontal dashed lines
and dot-dashed orange lines represent the analytical results in the high- and low-frequency limits, respectively, given by Eqs. (9) and (12).
Up arrows indicate the rough boundary between the wave- and geometrical-optics regions for each ✓s (the description after Eq. (13) in the
text). In the left panel, dotted curves denote negative values (AF < 0). In the right panel, the phase modulation is divided by 2⇡f , which
corresponds to an arrival time delay.
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Fig. 4.— Same as Fig.3, but plotted as functions of ✓s/✓� for various f . Red curve overlaps the purple curve (representing the high-
frequency limit) everywhere except near the center (✓s/✓� . 0.2).

(12), respectively. As the frequency of a chirp signal
from an inspiral binary sweeps from low to high, AF
increases proportionally to f in the wave-optics regime
but approaches a constant value of  in Eq. (9) in the
geometrical-optics regime. Similarly, ��F /(2⇡f) de-
creases logarithmically but approaches a constant value
of the potential time delay ( ̂/c3). These modulations
are observed even outside the Sun (✓s = 2✓�). Therefore,
within the frequency range of ground-based detectors,
the solar lensing imprints unique frequency-dependent
modulations on both the amplitude and phase. The solar
structure can (in principle) be extracted from the chirp
signal (recent study by Jung & Kim 2022). However, in
the high-frequency limit, solar structure extraction from
the signal (even from a chirp signal) is impossible at fixed
✓s because the constant AF is degenerate with an intrin-
sic amplitude of GWs. Similarly, the constants �F and
�F /(2⇡f) are degenerate with an intrinsic phase and ar-

rival time, respectively. Therefore, in geometrical optics,
the lensing modulations are indistinguishable from the
intrinsic source properties (unless lensed signals with var-
ious ✓s are available). Figure 3 is consistent with Fig. 2
of Jung & Kim (2022).
To discuss the behavior of these modulations in more

detail, let us introduce the angular Fresnel scale (Mac-
quart 2004; Takahashi 2006):

✓F =

✓
c

2⇡f

1

DL

◆1/2

,

' 0.38 ✓�

✓
f

100Hz

◆�1/2

. (13)

In the low-frequency limit, the lensed signal probes a
circle of radius ✓F around the source position (Section
2 and Fig. 1 of Choi et al. 2021). In other words, the
Fresnel scale can be interpreted as the e↵ective source
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the wave- and geometrical-optics regions, calculated from ✓F = ✓s
(the description after Eq. (13) in the text).

radius (Oguri & Takahashi 2020). The e↵ective source
radius shrinks with increasing f in the chirp signal. In
the high-frequency limit, the lensing probes a small re-
gion around the image position. As the modulations at
di↵erent f can probe di↵erent regions, one can in princi-
ple probe the density profile (Jung & Kim 2022). Here,
✓F = ✓s (unless ✓s = 0) roughly represents the boundary
between the wave- and geometrical-optics regions. This
boundary condition is derived from 2⇡ftd = 1 with ne-
glecting the potential term in Eq. (3) (Section II.B of
Choi et al. (2021) and Section 3 of Jung & Kim (2022))3.
The boundary is plotted as a series of up arrows in Figs. 3
and 4.
Figure 4 plots AF and �F as functions of ✓s for var-

ious fixed f . As the GWs from a pulsar are continu-
ous, one can (in principle) measure AF and �F as func-
tions of ✓s for a pulsar moving behind the Sun. For
smaller (larger) ✓s, the exponential term of the ampli-
fication factor (= 2⇡ftd) is smaller (larger) and the re-
sults approach the low-frequency (high-frequency) limit
in Eq. (12) (Eq. (9)). At f = 1000 Hz, the result al-
most matches that of geometrical optics except in the
near-center region (✓s/✓� . 0.2). As �F reflects the
gravitational potential, it can be measured even outside
the Sun. However, AF , which reflects the mass density,
falls steeply near the surface. Figure 4 is consistent with
Figs. 6 and 7 of Marchant et al. (2020).
The LVK analysis accounts for the Shapiro time de-

lay imposed by the Sun. In searches of continuous
GWs (Abbott et al. 2017, 2019, 2022b), the time delay
has been calculated using the TEMPO (Nice et al. 2015)
and TEMPO2 (Edwards et al. 2006; Hobbs et al. 2006)
packages developed for timing analyses of pulsar radio
signals. However, as shown in Figs. 3 and 4, the Shapiro
time delay is less accurate at lower f and smaller ✓s. To

3 This condition can also be derived from the intersection of the
low- and high-frequency limits of the phase modulation. Setting
limf!0 �F = limf!1 �F in Eqs. (9) and (12) with the point-mass
potential (5) (which is valid only for ✓s & 0.3 ✓� in the right panel
of Fig. 2), one obtains ✓F ' 0.94 ✓s.

Fig. 6.— Trajectories of pulsars moving behind the Sun (rep-
resented by an orange circle of radius ✓�). ✓LAT is the ecliptic
latitude and ✓LON is the ecliptic longitude with origin set at the
solar center.

clarify the accuracy of the Shapiro time delay, Fig. 5
plots a contour map of the di↵erences between the phase
modulation and its geometrical-optics limit. The di↵er-
ence ranges from �0.015 to 0.002 rad and is most signif-
icant at f ' 100–1000Hz near the center (✓s . 0.2 ✓�).
At a lower frequencies (f . 10Hz), the di↵erence reduces
because both �F and 2⇡ftd are proportional to f . As
expected, the Shapiro time delay is recovered at high f or
large ✓s. The dotted line, predicted by setting ✓F = ✓s, is
apparently consistent with the boundary. Although the
Shapiro time delay is less accurate inside the Sun, the
error is small (0.015 rad at most).

3. KNOWN PULSARS

This section describes some known pulsars moving be-
hind the Sun. From the results in Subsection 2.3, a pulsar
with higher frequency and a smaller impact parameter to
the Sun is more suitable for probing the solar structure.
We searched the ATNF pulsar catalog4 for pulsars sat-
isfying the following criteria: i) f >10Hz and ii) closest
distance to the solar center is within 3 ✓�. Twelve sam-
ples met the criteria: four pulsars crossing behind the
Sun and eight pulsars passing near but not behind the
solar surface. The information of these pulsars is summa-
rized in Table 1. The GW frequency f is twice the spin
frequency for the GW emission from mass-quadrupole
moment. These frequencies are covered by the sensi-
tivity range of the current ground-based detectors. The
LVK collaboration obtained 95% credible upper limits on
the strain amplitudes of some of these samples from the
O2 and O3 runs (Abbott et al. 2022b). They also pre-
sented the corresponding upper bounds on the ellipticity
of the mass distribution (estimated from Eq. (15)). The
collaboration also performed an all-sky search for contin-
uous GWs coming from any (known and unknown) spin-
ning neutron stars in isolated and binary systems (Ab-
bott et al. 2021; The LIGO Scientific Collaboration et al.
2022). Their upper bound was h95%

0
⇠ 1.1 (2.0) ⇥ 10�25

at f = 100–200 (50–700)Hz for isolated systems (and
similarly for binary systems).

4 http://www.atnf.csiro.au/research/pulsar/psrcat/
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TABLE 1
Pulsars with f >10Hz crossing behind the Sun (upper four) and close to,

but not behind, the Sun (lower eight)

name f (Hz) ✓LAT/✓� Ds (kpc) h95%
0 ✏95% refs

J1745�23 369 �0.07 7.94 —— —— C20
J1022+1001 122 �0.24 0.64 7.7⇥10�27 3.2⇥10�7 C96,R21
J1809�2332 14 �0.45 0.88 —— —— A09,R11
J1730�2304 246 0.71 0.47 5.0⇥10�27 3.7⇥10�8 L95,R21
J1858-2216 839 1.80 0.92 7.8⇥10�27 9.6⇥10�9 S16
J1142+0119 394 �1.84 2.17 7.4⇥10�27 9.8⇥10�8 S16
J2310-0555 766 �1.99 1.56 —— —— S16
J1756-2251 70 2.14 0.73 6.1⇥10�27 8.6⇥10�7 F04,F14
J1646-2142 342 2.44 0.97 —— —— R12,R13
J1811-2405 752 �2.52 1.83 1.5⇥10�26 4.5⇥10�8 K10,N20
J1836-2354B 619 �2.74 3.20 —— —— L11
J1836-2354A 596 �2.78 3.20 —— —— L11

Note. — Second column: GW frequency. Third column: ecliptic latitude ✓LAT

(i.e., the minimum angular separation to the solar center). Pulsars are listed in
order of increasing |✓LAT|. Fourth column: distance Ds, measured by parallax for
J1022+1001, J1730-2304, and J1756-2251 and estimated from the dispersion mea-
sures with the Galactic free-electron distribution model YMW16 (Yao et al. 2017) for
the other pulsars. Fifth and sixth columns: 95% upper limits on the strain amplitude
and ellipticity, respectively, taken from the LVK results (Abbott et al. 2022b). Last
column: references A09 (Abdo et al. 2009), C20 (Cameron et al. 2020), C96 (Camilo
et al. 1996), F04 (Faulkner et al. 2004), F14 (Ferdman et al. 2014), K10 (Keith et al.
2010), L95 (Lorimer et al. 1995), L11 (Lynch et al. 2011), N20 (Ng et al. 2020),
R11 (Ray et al. 2011), R12 (Ray et al. 2012), R21 (Reardon et al. 2021), R16 (Roy
& Bhattacharyya 2013), and S16 (Sanpa-Arsa 2016).

Figure 6 shows the trajectories of the upper four pul-
sars in Table 1. These pulsars move along the hor-
izontal axis with a velocity of ✓̇LON ' �2⇡/(1yr) =
�2.5 arcmin/hour = �0.15 ✓�/hour. The typical cross-
ing time is 2✓�/|✓̇LON| ' 13 hours. Marchant et al.
(2020) included J1022+1001 and J1730-2304 as candi-
dates but excluded the very recently discovered pulsar
J1745-23 (Cameron et al. 2020).
Figure 7 plots AF and �F as functions of ✓LON for

the four pulsars. J1745-23, with the highest frequency
and closest impact parameter, yields the maximum AF
(⇠ 2%). The highest |�F | is ⇠ 0.1 rad for all pulsars ex-
cept J1809-2332. The anomalous result for J1809-2332
is attributable to the low frequency (14Hz) of this pul-
sar. The typical |�F | is estimated as |�F | ' 2⇡f |td|
' 0.1 (f/200Hz) (|td|/100µs). The right panel clearly
shows the solar potential well around ✓LON = 0. The ef-
fect is especially noticeable in the curves of J1745-23 and
J1022+1001. As evidenced in the figure, |AF | ⌧ |�F |.
Figure 8 plots �F as a function of ✓LON for the lower

eight pulsars in Table 1. Because these pulsars (except
for J1756-2251) have relatively high frequencies, their
|�F | are relatively large (> 0.1 rad). As these pulsars
do not pass behind the Sun, their |AF | are negligibly
small.

4. PARAMETER EXTRACTION FROM THE LENSED
WAVEFORM

This section evaluates the accuracy to which the so-
lar density profile can be extracted from the lensed GW
signal through a Fisher analysis.

4.1. Fisher matrix analysis

We consider a highly spinning neutron star with a small
non-axisymmetry around the spin axis as the GW source.
Neglecting spin down, the source is assumed to emit con-
tinuous monochromatic GWs during the observational

period. A waveform of frequency f is then described as

h(t; f) = h0 cos (2⇡ft+ �0) , (14)

where �0 is a constant phase. The strain amplitude h0 is
determined by the non-axisymmetry as (e.g., Riles 2022)

h0 =
4⇡2✏GIf2

c4Ds

, (15)

where I is the moment of inertia about the spin axis and
✏ is the ellipticity of the moment of inertia. A gravita-
tionally lensed waveform hL(t; f) can be obtained from
Eqs. (1) and (14) as5

hL(t; f) = h0 [1 +AF (t; f)] cos [2⇡ft+ �0 + �F (t; f)] .
(16)

Here, AF and �F are numerically obtained from Eqs. (1)
and (6). When ✓s is large (✓s > 20 ✓�), we can apply the
geometrical-optics results (Eqs. (9) and (10)), which are
fully valid at such large angles (Fig. 4).
Suppose that the pulsar is observed from time t =

�T/2 to T/2, where T is the observational period and
t = 0 is the time at which the pulsar is closest to the so-
lar center. The signal-to-noise ratio (SNR) is calculated
as

SNR2 =
1

Sn(f)

Z T/2

�T/2
dt

⇥
hL(t; f)

⇤2
,

'
h2
0

2Sn(f)
T, (17)

where Sn is the noise spectrum of the detector. Through-
out this paper, the measurement accuracies of the fitting

5 Here, we perform a Fourier transform to obtain the unlensed
waveform in the frequency domain, then calculate the lensed wave-
form using Eq. (1), and finally repeat the Fourier transform to
obtain the lensed waveform (16) in the time domain.



Probing the solar interior through GW lensing 7

10ï4

10ï3

10ï2

ï2 ï1  0  1  2

A
F

✓     /✓
�LON

time (hours)
10               0             ï10

J1745ï23
J1022+1001
J1809ï2332
J1730ï2304

 0.01

 0.1

ï2 ï1  0  1  2

�
�
F

✓     /✓
�LON

time (hours)
10               0             ï10

Fig. 7.— Amplitude and phase modulations of the four pulsars moving behind the Sun. The lower x axis is the pulsar position ✓LON/✓�
along the ecliptic longitude (Fig.6), while the upper x axis represents the corresponding crossing time. Dotted curves in the left panel
represent negative values.

 0.1

 1

ï10 ï5  0  5  10

�
�
F

✓     /✓
�LON

time (hours)
50                     0                   ï50

J1858ï2216
J2310ï0555
J1811ï2405
J1836ï2354B
J1836ï2354A

J1142+2329
J1646ï2142

J1756ï2251

Fig. 8.— Phase modulations of the eight pulsars passing close to
(but not behind) the Sun.

parameters are normalized by the SNR. Therefore, the
results do not depend on a specific form of Sn. In the
second equality of Eq. (17), we neglect AF and use the
approximation cos2(2⇡ft+ �0 + �F ) ' 1/2 obtained by
long-time averaging.
The lensed waveform (16) depends on the solar den-

sity profile, the constant amplitude h0, and the con-
stant phase �0. Let the solar density profile be char-
acterized by N parameters Ai (i = 1, 2, · · · , N). The
total set of fitting parameters is pµ = (Ai, lnh0,�0)
with µ = 1, 2, · · · , N + 2. The measurement accu-
racy of pµ is given by the inverse of the Fisher matrix:
�pµ = [(��1)µµ]1/2. Neglecting the degeneracy with the
other parameters, �pµ = (�µµ)�1/2. The Fisher matrix

is given by (Finn 1992; Cutler & Flanagan 1994)

�µ⌫ =
1

Sn(f)

Z T/2

�T/2
dt
@hL(t; f)

@pµ

@hL(t; f)

@p⌫
. (18)

Using Eqs. (16) and (17), all components of � are given
as follows:

�AiAj
=

Z

t


@AF (t; f)

@Ai

@AF (t; f)

@Aj

+ {1 +AF (t; f)}
2 @�F (t; f)

@Ai

@�F (t; f)

@Aj

�
,

�Ai lnh0
=

Z

t
{1 +AF (t; f)}

@AF (t; f)

@Ai

,

�Ai�0
=

Z

t
{1 +AF (t; f)}

2 @�F (t; f)

@Ai

,

�lnh0 lnh0
= ��0�0

=

Z

t
{1 +AF (t; f)}

2 ,

�lnh0�0
= 0, (19)

with Z

t
⌘ SNR2 1

T

Z T/2

�T/2
dt.

Similarly to Eq. (17), we here applied the approximations
sin2 or cos2(2⇡ft+ �0 + �F ) ' 1/2 and sin(2⇡ft+ �0 +
�F ) cos(2⇡ft+�0+�F ) ' 0. From Eq. (19), �pµ simply
scales as �pµ / SNR�1.
The simple waveform (14) neglects the detector re-

sponse which depends on other source parameters such
the inclination of the spin axis and GW polarization.
Owing to Earth’s spin and orbital motion, the detector
response causes daily and yearly periodic modulations on
both amplitude and phase. Unlike the solar modulation
(which is temporary but repeats annually), the response
modulations are trigonometric functions of time. We ex-
pect that the solar modulation can be distinguishable
from the response modulations and thus the response
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does not significantly a↵ect the measurement accuracies
of the solar model parameters.

4.2. Constraint on the potential amplitude

This subsection presents the measurement accuracy of
the overall amplitude of the solar gravitational potential.
Replacing the potential as

 ̂(✓) ! A  ̂(✓), (20)

we calculate the measurement error in A . The deriva-
tives in the Fisher matrix with respect to A are numer-
ically obtained by changing A by ±1%.
Figure 9 plots the measurement accuracies of A , lnh0

and �0 for the pulsars moving behind the Sun at f >
100Hz. The results are normalized with SNR = 100 over
a one-year observation period. Because |AF | ⌧ |�F |,
A is mainly determined by the phase modulation. The
slope of �A changes slightly at the surface (corre-
sponding to T ⇡ 10�3 yr); the slope is steeper (shal-
lower) inside (outside) the Sun. These results can be
explained as follows. In the Sun’s interior, |�F | increases
with ✓ (in contrast to the constant �0), thus A and
�0 can be determined almost independently. Outside
the Sun, �F is nearly constant at large ✓ (� ✓�), thus
A and �0 are degenerate to some extent. The dashed
red curve plots �A without parameter degeneracy (i.e.,
�A = (�A A )

�1/2), which is ⇠ 10 times better than
the solid red curve. Previously, Marchant et al. (2020)
roughly estimated the detectability of lensing signatures.
As they ignored the parameter degeneracy, they under-
estimated the measurement error. Inside the Sun, h0

cannot be determined because h0 and AF are highly de-
generate, but outside the Sun, the degeneracy is broken
and � lnh0 ' SNR�1.
We caution that ��0 shown in Fig. 9 depends on the

arbitrary constant in the gravitational potential. If a
constant term is added to the potential, i.e.,  ̂(✓) !

 ̂(✓) +  ̂0, the phase modulation changes as �F !

�F � 2⇡f  ̂0/c3 using Eqs. (1)–(3). Two components of
the Fisher matrix change accordingly6. After some alge-
bra, one finds that �A , � lnh0, and (��1)A lnh0

are

independent of  ̂0 but ��0 and its cross correlations,
(��1)A �0

and (��1)lnh0�0
, do depend on  ̂0.

Table 2 lists the �A results of all pulsars. Although
�A varies among the pulsars, f�A is almost constant;
i.e., it is independent of the impact parameter to the Sun.
�A can then be approximately fitted as

�A ⇡ 0.3

✓
f

300Hz

◆�1 ✓SNR

100

◆�1

, (21)

indicating that a higher-frequency pulsar is more promis-
ing for detecting A . According to Eq. (21), A can
be detected at the 3� confidence level when SNR ⇡

100 (f/300Hz)�1.

4.3. Measurement of the solar density profile

6 �A �0
! �A �0

�(2⇡f  ̂0/c3)��0�0
and �A A ! �A A �

(4⇡f  ̂0/c3)�A �0
+ (2⇡f  ̂0/c3)2��0�0

.

TABLE 2
Measurement accuracies of the

potential amplitude A (the fiducial
value = 1) over one year of
observation with SNR = 100.

name �A f�A (Hz)

J1745�23 0.24 (0.026) 90
J1022+1001 0.74 (0.077) 90
J1809�2332 6.6 (0.69) 90
J1730�2304 0.37 (0.038) 91
J1858-2216 0.11 (0.011) 92
J1142+0119 0.23 (0.024) 92
J2310-0555 0.12 (0.012) 92
J1756-2251 1.3 (0.13) 92
J1646-2142 0.27 (0.028) 93
J1811-2405 0.12 (0.013) 93
J1836-2354B 0.16 (0.016) 93
J1836-2354A 0.15 (0.015) 93

Note. — Values in parentheses are calcu-
lated without parameter degeneracy.

TABLE 3
Measurement accuracies of the
density amplitudes in two annuli

over a one-year observation period
with SNR = 104.

Case (I) Case (II)
name �A⌃1,2 �A⌃1, �A⌃2

J1745�23 0.40 0.11, 1.8
J1022+1001 2.0 0.47, 8.0
J1730�2304 2.9 1.3, 22

Note. — In Case (I), �A⌃1 = �A⌃2.

TABLE 4
Same as Table 3, but for three annuli and a one-year

observation period with SNR = 105.

Case (I) Case (II)
name �A⌃1, �A⌃2, �A⌃3 �A⌃1, �A⌃2, �A⌃3

J1745�23 0.24, 0.33, 0.10 0.029, 0.24, 1.5
J1022+1001 1.3, 1.8, 0.53 0.17, 1.3, 6.9
J1730�2304 0.43, 0.92, 0.74 0.22, 0.93, 6.3

This subsection presents our main result, namely, the
measurement accuracy of the solar density profile. Let
the surface density be divided into N annuli (Fig. 10),
where N is 2 or 3. We write the surface mass den-
sity of the i-th annulus as ⌃i(✓) and the mass as Mi

(i = 1, · · · , N), where a smaller i corresponds to an inner
annulus. We consider the following two cases:

Case (I): Each annulus has the same mass (= M�/N).

Case (II): Each annulus has the same radial thickness
(= ✓�/N).

In Case (I), the boundary radius between the annuli is
0.20 ✓� for N = 2. The boundary radii are 0.14 ✓� and
0.26 ✓� between annulus 1 and 2 and between annulus 2
and 3, respectively, for N = 3. In Case (II), the mass
ratios are M1 : M2 ' 17 : 1 for N = 2 and M1 : M2 :
M3 ' 57 : 13 : 1 for N = 3 (i.e., the mass reduces from
the innermost to the outermost annulus).
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Fig. 10.— Division of the solar surface into N annuli. Each
annulus has the same mass in Case (I) and the same radial width
in Case (II).

We change the amplitude of the i-th density as

⌃i(✓) ! A⌃i⌃i(✓), (22)

while fixing the total mass, i.e.,
PN

i=1
A⌃iMi = M�. Un-

der these settings, we calculate the measurement accu-
racies of A⌃i, lnh0, and �0. When N = 2, the density
profile is solely characterized by the fitting parameter
A⌃1 because the total mass is fixed, i.e., M1�A⌃1 =
M2�A⌃2. Similarly, when N = 3, the fitting parameters
are A⌃1 and A⌃2. The other parameter, �A⌃3, is deter-
mined via (M3�A⌃3)2 = (M1�A⌃1)2 + (M2�A⌃2)2 +
2M1M2(��1)A⌃1A⌃2

. To obtain the derivative with re-
spect to A⌃i in the Fisher matrix, we numerically calcu-
late the derivatives of the potential in Eq. (4) and the

amplification factor in Eq. (6) by changing A⌃i by ±1%.
Figure 11 plots the measurement accuracies of A⌃i for

N = 2. As the total mass is fixed, the lensed signal is in-
sensitive to the density profile when the pulsar is outside
the Sun. Therefore, the accuracies are not improved at
T & 10 hours. J1745-23 gives the best accuracy because
it has the highest frequency and smallest impact parame-
ter. J1730-2304 has a higher frequency than J1022+1001
but its larger impact parameter lessens the constraint. In
Case (II), �A⌃2 is 17 times larger than �A⌃1, reflecting
the mass ratio M1/M2 ' 17. According to the figure, at
least SNR ⇡ 104 (T/yr)1/2 is required for probing the so-
lar density profile, but a lower SNR may be su�cient for
probing with J1745-23. We comment that � lnh0 and
��0 agree with SNR�1 outside the Sun (corresponding
to T > 10 hours, these results are not plotted in the fig-
ure). The numerical values of �A⌃i are listed in Table
3.
Figure 12 plots the measurement accuracies of A⌃i for

N = 3. In Case (I), �A⌃3 shows the highest accuracy
for most pulsars (the exception is J1730-2304) because
the third annulus (with radius ranging from 0.26 ✓� to
✓�) has the largest area. Therefore, the pulsar remains
longer in the third annulus than in the other annuli. In
Case (II), �A⌃1 < �A⌃2 < �A⌃3 simply because the
inner annulus is more massive than the outer one. The
numerical values of�A⌃i are listed in Table 4. According
to Fig. 12, at least SNR ⇡ 105 (T/yr)1/2 is required for
measuring the density profile with N = 3. The SNR
must be further increased for larger N (> 3).
In geometrical optics, �F is fully determined by the

mass enclosed within a given radius. Therefore, a pulsar
can probe the enclosed mass down to the impact parame-
ter. In wave optics, �F also depends on the outer density
profile owing to di↵raction (Subsection 2.3). Therefore,
the accuracy of A⌃i depends on the frequency and im-
pact parameter in a complicated manner. Combining the
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results of di↵erent pulsars improves the measurement ac-
curacy of the solar density and increases the radial range
of the estimation.
Figures 11 and 12 suggest that the accuracies strongly

depend on the chosen boundary. In Case (I), the accu-
racies are similar in di↵erent annuli but in Case (II), the
accuracy is better in the inner annulus. This implies that
the annulus mass mainly determines the accuracy. The
boundary that maximizes the accuracy will depend on
the frequency and impact parameter of the pulsar.
The strain sensitivities of the planned detectors of Cos-

mic Explorer (CE)7 and Einstein Telescope (ET)8 will be
approximately 100 times better than those of the LIGO
O3 run. The current upper limits in Table 1 were deter-
mined from observations taken over approximately one
year in the O3 run. These limits correspond to an upper
limit of SNR . 10 (Appendix C of Abbott et al. 2019).
Therefore, in CE and ET observations, the best SNR for
these known pulsars is estimated as ⇡ 103 (T/yr)1/2 (a
similar discussion is given in Section V of Marchant et al.
2020). Judging from these estimates, measuring the den-
sity profile using these pulsars will be a di�cult task in
the near future. To alleviate this problem, we require
more pulsars than those detected by radio telescopes to
date (as discussed in the next section). Moreover, these
pulsars must have high frequencies and small impact pa-
rameters.

7 https://cosmicexplorer.org/
8 https://www.et-gw.eu/

TABLE 5
Globular clusters crossing behind the Sun

name ✓LAT/✓� ✓h/✓� Ds (kpc) mass (M�)

NGC 6287 0.49 0.046 7.9 1.5⇥ 105

NGC 6717 0.50 0.043 7.5 3.6⇥ 104

NGC 6642 �0.89 0.046 8.1 3.4⇥ 104

Note. — Listed are the ecliptic latitude of the clus-
ter center ✓LAT, the half-light angular radius ✓h, the dis-
tance Ds, and the mass. Here, the distance and mass are
taken from Baumgardt’s catalog of globular clustersa (e.g.,
Baumgardt & Hilker 2018).
ahttps://people.smp.uq.edu.au/HolgerBaumgardt/globular/

5. MILLISECOND PULSARS

This section roughly estimates the number of MSPs
moving behind the Sun that will be found in the near
future.
The present ATNF catalog lists approximately 3300

pulsars, including around 500 highly spinning pulsars
with a spin period of < 10ms (corresponding to f >
200Hz). These pulsars are the so-called MSPs. The
Milky Way is estimated to host 40000–90000 MSPs (e.g.,
Bhattacharyya & Roy 2022). As the sky fraction of the
zodiac belt swept by the Sun is 2⇡ ⇥ 2✓�/(4⇡) ' 0.5%,
the belt probably holds 200–400 MSPs. Almost none of
these MSPs have been found, but tens of them will be
identified in ongoing and upcoming radio surveys. For
instance, the Canadian Hydrogen Intensity Mapping Ex-
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Fig. 12.— Same as Fig. 11, but for three annuli with SNR = 105 (T/yr)1/2.

periment (CHIME)9, MeerKAT10 and the Five-hundred-
meter Aperture Spherical radio Telescope (FAST)11 will
detect ⇡ 1000 MSPs over the sky (Lorimer et al. 2019,
their Table 1). These performances will be surpassed
by the Square Kilometer Array, which will detect 1500
MSPs in phase 1 (Keane et al. 2015).
At present, approximately 220 MSPs have been found

in 33 globular clusters12; ⇠ 7 MSPs per cluster on av-
erage. Per unit mass, pulsars are two or three orders of
magnitudes more abundant in clusters than in the Galac-
tic disk (Freire 2013). Therefore, many MSPs probably
exist in clusters. Among the 157 clusters listed in the Mc-
Master catalog of Milky Way globular clusters13 (version
2010, Harris 1996, 2010), three globular clusters move
behind the Sun. The data are summarized in Table 5.
Although no MSPs have been discovered in these clus-
ters14, tens of MSPs are expected in each cluster.

6. CONCLUSIONS

We studied the detectability of the solar density pro-
filing using GW lensing with known pulsars. After se-
lecting suitable pulsars with high frequencies and small
impact parameters to the Sun from the ATNF catalog,
we calculated the measurement accuracy of the overall

9 https://chime-experiment.ca/en
10 https://www.sarao.ac.za/gallery/meerkat/
11 https://fast.bao.ac.cn
12 http://www.naic.edu/ pfreire/GCpsr.html
13 Data may be downloaded from

https://physics.mcmaster.ca/Fac Harris/mwgc.dat
14 http://www.naic.edu/ pfreire/GCpsr.html

amplitude of the solar gravitational potential using a
Fisher analysis. The lensing signature can be detected
with 3� confidence when SNR ⇡ 100 (f/300Hz)�1 dur-
ing one year of observations. The detection is therefore
improved with high-frequency pulsars. The signature can
be detected even if the pulsar trajectory does not pass
behind the Sun (in such cases, the impact parameter to
the Sun does not significantly a↵ect the detectability).
We found that the detectability is degraded by param-
eter degeneracy with the constant phase of waveform.
Next, we divided the projected density profile into two
or three annuli, and calculated the measurement accu-
racy of each annulus mass. If three known pulsars move
behind the Sun with f > 100Hz, a high SNR (& 104)
in a year long observation is required for measuring the
density profile in the two-annulus case. The SNR must
be raised to & 105 in the three-annulus case.
Currently, only two known MSPs move behind the Sun,

but 200–400 can potentially exist within our Galaxy. On-
going and future radio surveys such as SKA, CHIME, and
FAST will find tens of these MSPs in coming decades.
The solar density profile has been already measured

to percent level precision based on global helioseismol-
ogy (a recent review by Basu 2016). GW lensing will
likely become a complementary and independent method
for probing the Sun in future.
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